The boron-coated straw (BCS) technology is built on a patented low-cost technology that places long copper tubes (straws) of variable diameter, coated on the inside with a thin layer of 10B-enriched boron carbide (10B4C). Thermal neutrons captured in 10B are converted into secondary particles, through the 10B(n,α) reaction. The secondary 7Li and α (or 4He nucleus) particles are emitted isotropically in opposite directions with kinetic energies of 1.47 MeV and 0.84 MeV, respectively (dictated by the conservation of energy and momentum). For a boron carbide layer that is only 1 μm thick, one of the two charged particles will escape the wall 78% of the time, and ionize the gas contained within the straw. Each BCS is operated as a proportional counter, with the tube wall acting as the cathode, and a thin wire tensioned through its center serving as the anode electrode, operated at a high positive potential. Primary electrons liberated in the gas drift to the anode, and in the high electric field close to the anode, avalanche multiplication occurs. This avalanche delivers an amplified charge on the anode wire, which is the detected signal. Standard charge sensitive preamplifier and shaping circuitry are used to produce a low-noise pulse for each neutron event. Gamma interactions in the wall produce near minimum ionizing electrons that deposit a small fraction of the energy of the heavily ionizing alpha and Li products. Gamma signals are effectively discriminated with a simple pulse height threshold.
The detector design, as just discussed, consists primarily of a BCS inside an aluminum tube with a tensioned wire down the shared axis of the tube and BCS. Endcaps are laser welded onto the tube to form a hermetic seal, and the working gas that supports the avalanche multiplication is flushed into the tube using the gas port that is then sealed. In comparison to 3He-based detectors, which require multiple atm of pressure to maintain high sensitivity, 1 atm or less is sufficient for any BCS sensitivity. For cases where greater sensitivity is required in a BCS-based detector, BCS with unique cross sections and/or multiple straws can be placed inside a single aluminum tube, effectively increasing the density of 10B inside the tube.
BCS detectors can be similar in form to 3He detectors, facilitating straightforward 1:1 replacement of 3He tubes, while preserving the existing housing, amplifier and high voltage supply. Yet BCS detectors improve upon 3He in several ways, making them significantly more versatile in their applications:
Learn more about PTI's automated production of Boron Coated Straws (BCSs) in the video.